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Abstract 
Many different layers of automation must be integrated to 
support future space missions.  At the base layer, spacecraft 
must autonomously navigate; i.e., follow a specified 
trajectory using the spacecraft’s actuators, sensors and 
knowledge of its dynamics.  This trajectory must minimize 
precious fuel use and satisfy mission goals and 
environmental constraints.  To facilitate an appropriate 
connection between task and optimal trajectory planning, 
we map the well-known Blocks World domain to the space 
environment by defining a simple task-level implementation 
that uses cost information from an optimal trajectory 
planner to make action choices.  Our method is applicable at 
both the micro-level where obstacles must be efficiently 
circumvented and the macro-level where orbital dynamics 
dictate assembly task sequencing and trajectory design. 

Introduction 
Imagining a child stacking blocks on the floor is a pleasant 
exercise many people can relate to.  Placing these same 
blocks in the space environment and having them self-
assemble into particular “stacked” configurations is 
anything but child’s play.  When considering the necessary 
role automation must play in future space missions and 
endeavors, it is important to study basic scenarios that 
further our understanding of the challenges we must 
overcome to meet such objectives.  We believe some of 
these challenges lie in the inherent disconnect between the 
planning of tasks and the development of the continuous 
trajectories that must be followed to accomplish these 
tasks.  Before any other mission tasks/goals can be 
prioritized and fulfilled, spacecraft must be able to 
autonomously navigate; i.e., follow a specified trajectory 
using the spacecraft’s actuators, sensors and knowledge of 
its dynamics.  To be clear, we make an important 
distinction between path and trajectory: 
 
• A path is the locus of waypoints followed during 

motion; i.e., a purely geometric motion description. 
• A trajectory is a path that includes velocities and/or 

accelerations at each point according to the governing 
equations of motion; i.e., a geometric and temporal 
description of the object’s motion. 

 

Mission goals are fulfilled by selecting action choices that 
optimize fuel use and time given system and 
environmental constraints.  While these action choices can 
be easily implemented with traditional AI planning tools, 
the optimization of the fuel/time resources required to 
move through space requires consideration of system 
dynamics and actuation capabilities involving complex 
physical motions governed by nonlinear differential 
equations.  Optimal trajectory planners are specifically 
designed for this task, connecting spatial waypoints with a 
physically-achievable trajectory.  However, they are not 
designed to optimize over a global assembly problem 
involving a large number of choices in terms of what gets 
assembled, when and where (Henshaw, 2003). Full 
automation—especially in a space environment—must 
involve the coordination of intelligent task and motion 
planning. 
 
The problem we address in this paper is set within the 
context of the famous microworld domain known as 
“Blocks World” (BW), where an infinite table holds a 
finite set of unique blocks to be stacked in particular 
configurations (Slaney and Thiébaux, 2001):   

Problem Definition:  A group of 4 self-actuating 
blocks are deployed so that they are in approximately 
the same orbit but have slightly different positions.  
From an initial ‘snapshot,’ the goal is to build a linear 
4-block structure in a fuel-optimal ‘stacking 
arrangement’ using block-a as the anchor block 
(see Figure 1). 
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Figure 1:  Initial local distribution of blocks. 



Typical BW predicates such as Stack(a,b) are changed 
to operators like Dock(a,b) and so forth, with the 
“table” being the orbit in which the configuration resides.  
In our problem there is no robotic arm moving the blocks 
about as they are presumed self-actuated by thrusters 
located on each face.    
 
The merit of considering ‘simple’ problems like these in 
terms of integrating sound trajectory planning and task 
planning components becomes apparent as the action 
choices of the problem scale (Cambon et al., 2003).  It is 
also fundamental when one considers the many layers of 
reasoning required to perform even relatively mundane 
tasks in the complex harsh environment of space.  By 
presenting the AI task planner with appropriate costs in 
terms of minimizing fuel use, the time-to-completion, and 
proximity to obstacles (for safety considerations), the 
trajectory planner relieves the task planner of the full 
representational details of block locations/motion that 
would typically overwhelm it, making optimal solutions 
prohibitive (Smith et al., 2000).  Instead, the task planner 
uses cost values computed by the trajectory planner to 
influence decisions related to the optimal completion of the 
block docking sequence.   
 
We lay the groundwork for facilitating a connection 
between AI task planning and optimal trajectory planning,   
after a brief discussion of related work, by defining a 
space-based symbolic domain representation of BW.  We 
then present the system architecture and its component 
algorithms followed by results for the four-block assembly 
problem.  The results are contrasted with assembly 
constructions in flat-space and in a central gravitational 
field (Keplerian model).  We conclude with future work to 
extend our models/algorithms and to practically implement 
this system for space-based construction activities. 

Some Related Work 
This work embodies two main themes: self-assembly and 
the integration of task and optimal trajectory planning.  
There is a broad range of work encompassing many 
aspects of the self-assembly mechanics and automation 
required by this problem (Jones and Matarić, 2003; Suh et 
al., 2001; Shen, 2001; Butler and Rus, 2001; Shen et al., 
2000; Rus and Vona, 1999).  Some approaches focus on 
distributing path-planning and actuation within the 
system—developing a parallel local awareness (Butler and 
Rus, 2001), while others focus on global strategies.  Both 
are needed in the space environment where the 
optimization of limited resources directly impacts mission 
success.  To this end, either strategy requires the careful 
planning of the trajectories executed in the self-assembly 
process.  One can think of this in other important contexts, 
such as assembling waypoints to meet military objectives 
or reconnaissance goals (Petterson and Doherty, 2004).  

While there is much work on either problem there remains 
the persistent gap between the language we use for 
symbolic reasoning and that used for controlling 
autonomous motion.  This ‘gap’ is beginning to be 
recognized and pursued.     

Domain Description 
BW is a generic domain where the blocks are 
representations of objects—be they freight, transportation 
devices, building materials, atoms, etc.  The combination 
of abstraction and the basic premise of moving and 
assembling these “blocks” in particular configurations 
lends itself well to the problem of self-assembly.   
 
Mapping BW to a 3D space environment necessitates a 
paradigm shift in the traditional representation of the 
‘infinite table.’  Instead of a table on which all of the 
blocks—be they ‘free’ or part of a tower—reside, we 
introduce the notion of a ‘target table’ that will be the orbit 
in which the blocks are assembled.  Blocks in other orbits 
may be considered free or on ‘virtual tables.’   Full 3D 
construction with local and global assembly entails such 
details as:  
• Moving and docking/undocking block superstructures, 

changing the system dynamics 
• Docking in any orbit 
• Building structures with ‘non-reachable’ or variable 

configurations (e.g., cubic docking with an open center 
for unique configurations) 

 
Before embracing these details, we have chosen to begin 
with a constrained construction that disambiguates block 
states and more closely mirrors the traditional BW 
paradigm—i.e., the construction of towers or linear 
assemblies relative to a specific anchor block freely 
drifting in space.  This provides a simplified baseline from 
which to add the necessary details for unconstrained 3D 
construction in future work. 

PDDL Domain Model 
To provide a framework for discussion and to lend some 
familiarity for those experienced with BW planning, we 
define a 3D BW domain with a PDDL v.2.1 (Fox and 
Long, 2003) representation (see Figure 2), making the 
following assumptions for linear self-assemblies: 
 
1. Blocks have two specific faces (+y,-y) to which any 

other block may dock. 
2. Actions occur sequentially—only one block may be 

docked/undocked to/from another block at any time. 
3. Only one connected structure may be assembled. 



 
Figure 2:  3D BW problem PDDL representation 

 
4. Blocks either drift as part of the assembly or are free to 

maneuver, in which case they cannot be connected 
(docked) to any other block. 

5. Spacecraft (blocks) have sufficient fuel for maneuvers 
and will always execute actions accurately. 

6. All blocks are uniquely labeled.  They may be 
interchangeable to allow random placement (as in our 
example), or they may have specific configuration 
requirements. 

 
To achieve a goal sequence a set of constructive actions is 
performed given certain preconditions.  When a 
constructive move is not possible the problem is in a 
‘deadlocked’ state, necessitating the movement of some 
block before a constructive move is possible.  Efficient 
search strategies employ methods to minimize the number 
of deadlocks encountered—i.e., backtracking (Slaney and 
Thiébaux, 2001).  In this work, all moves are constructive.  
However, because optimal solutions are computationally 
expensive, there is an algorithmic tradeoff of efficiency for 

optimality due to the nature of the problem as discussed in 
the following section. 

Architecture   
In order to facilitate an appropriate link between task and 
trajectory planning, it was important to design an 
architecture (see Figure 3) that retained the dynamical state 
information for each planning state (search node) while 
keeping this information hidden—i.e., in a “black box”—
from the task planner.  For this initial implementation, a 
primitive C++ “task planner” interprets the PDDL domain 
(see Figure 2) and conducts an optimal search in which the 
“translator function” is invoked to acquire the cost J of the 
instantiated action by interfacing with a Matlab-based 
optimal trajectory planner (Henshaw, 2003).  The task 
planner uses a uniform cost (Dijkstra's) search strategy 
with actual node n cost, g(n), set to the cost of the parent 
node plus additional cost J of transitioning from the parent 
to node n.  Transition costs J (see Equation 2) are 
computed during the trajectory planning process for each 
action.  The focus of the current task planner’s 

(define (domain blocks-in-space)  
 (:requirements :equality) 
(:predicates  
  (block ?b)       ; ?b is a block 
  (orbit ?o)       ; ?o is an orbit 
  (face ?f)        ; ?f is a block face 
  (in-orbit ?b ?o)    ; block ?b is in orbit ?o 
  (clear ?b ?f)     ; face ?f of block ?y is clear (undocked) 
   (docked ?b1 ?f1 ?b2 ?f2) ; face ?f1 of block ?b1 is docked to face ?f2 of block ?b2 
  (assembled ?b)     ; block ?b is part of the single assembled structure 
  (free ?b))       ; block ?b is free to move and not assembled; both faces of ?b are clear 

(:action insert     ; insert ?block1 residing in ?orbit1 into ?orbit2 
   :parameters    (?block1 ?orbit1 ?orbit2) 
   :precondition   (and  (block ?block1) (free ?block1) (orbit ?orbit1) (orbit ?orbit2)  
               (in-orbit ?block1 ?orbit1)) 
   :effect       (and (in-orbit ?block1 ?orbit2) (not (in-orbit ?block1 ?orbit1)))) 

(:action dock          ; move free ?block1 so that its ?face1 docks to ?face2 of anchor ?block2 
   :parameters    (?block1 ?face1 ?block2 ?face2) 
   :precondition   (and (block ?block1) (block ?block2) (face ?face1) (face ?face2) (free ?block1) 
                 (clear ?block2 ?face2) (assembled ?block2) (not (= ?face1 ?face2))) 
    :effect      (and (docked ?block1 ?face1 ?block2 ?face2) (assembled ?block1)  
                (not (clear ?block1 ?face1)) (not (clear ?block2 ?face2)) (not (free ?block1))))
 

 (:action undock       ; move ?block1 to undock from anchor ?block2 
   :parameters    (?block1 ?face1 ? ?block2 ?neg-face2) 
   :precondition   (and (docked ?block1 ?face1 ?block2 ?face2) (clear ?block1 ?neg-face))) 
   :effect      (and (free ?block1) (clear ?block1 ?face1) (clear ?block2 ?face2)  
              (not (docked  ?block1 ?face1 ?block2 ?face2)) (not (assembled ?block1))))) 
(define (problem assemble-four-blocks) 
 (:domain blocks-in-space)  
 (:objects     block-a, block-b, block-c, block-d, pos-y, neg-y, target-orbit) 
 (:init     (block block-a) (block block-b) (block block-c) (block block-d) (face neg-y)  
          (face pos-y) (in-orbit block-a target-orbit) (in-orbit block-b target-orbit) 
          (in-orbit block-c target-orbit) (in-orbit block-d target-orbit) (clear block-a pos-y) 
          (clear block-a neg-y) (clear block-b pos-y) (clear block-b neg-y) (clear block-c pos-y) 
          (clear block-c neg-y) (clear block-d pos-y) (clear block-d neg-y)  
          (assembled block-a)  (free block-b) (free block-c) (free block-d)) 



implementation is the information communicated between 
task and trajectory planners.  We therefore discuss this 
communication and the design of the trajectory planner in 
more depth below. 

 
Figure 3:  System Architecture 

Task Planner and Translator Function 
The task planner begins its search for an optimal block 
assembly sequence by using the knowledge base’s initial 
full-state ‘snapshot’ zk,o for all blocks k of the recently 
deployed system.  A node queue is then constructed, with 
children of the initial root node formed from actions acn 
and parameter bindings parn that are able to preferentially 
achieve a subgoal or the set of actions (acn,parn)  that meet 
all preconditions of acn if no subgoals can be directly 
achieved.  For each uniform cost node expansion the queue 
must be ordered by total path cost, g(n).   
 
The translator function is then called to compute the cost J 
of transitioning from each parent to child node.  The 
translator passes the continuous state zk,o for all blocks 
directly to the trajectory planner.  Based on the zk,o and the 
action (acn,parn) to be executed, the translator also 
computes the final (goal) state (b2zb1)f to be achieved as the 
product of executing action acn.  For all BW actions, b1 is 
the block to be moved and b2 is the anchor block or target 
orbit to which b1 must maneuver.  By expressing position 
vector (b2zb1)f in b2 coordinates (indicated by the leading 
b2 superscript), the translator computes b1 goal positions 
relative to its drifting target (b2), allowing maneuver time 
to be optimized by the trajectory planner rather than 
specified in advance.  In the general case where all blocks 
drift over time (freely or in a gravitational field), all blocks 
will move as the trajectory for each acn is executed, 
requiring that the final state zk,f of all blocks after executing 
acn be stored as the initial state “snapshot” for the offspring 
of node n.  Should node n be part of the optimal solution, 
the optimal trajectory zb1(t) for maneuvering block b1 is 
archived along with the cost J returned by the translator as 
the cost of executing action (acn,parn). 
 
This might appear a lengthy computational process for 
such a simple assembly activity (Cambon et al, 2003).  

However, as we discuss below, incorporating complex 
dynamics is the only way to ensure optimal solutions 
worthy of space applications. 

Trajectory Planner 
Traditional trajectory planning strategies used in terrestrial 
applications for rover locomotion, etc., need to be 
supplemented to accommodate the unique challenges of 
navigating spacecraft.  To navigate a free path from point 
A to point B without intersecting any obstacles, cell 
decomposition and roadmap methods such as Voronoi 
diagrams, etc. are usually employed with varying degrees 
of success (Latombe, 1991).  However, when dealing with 
spacecraft one must take into account:   
• Limited fuel resources/maneuverability, 
• Possible encounter(s) with a wide range of obstacle 

operating velocities, 
• Dynamic thruster constraints, 
• Varied endpoint constraints/operating times.   
 
Traditional methods fall short of meeting these dynamic 
constraints (Henshaw, 2003).  This is especially realized 
when contrasting a relative ‘straight-line’ trajectory in flat 
space with the same trajectory in a central gravitational 
field as presented below.  Additionally, the self-assembly 
of blocks in both environments requires the transfer of 
blocks from one orbit to another.  For circular orbits, the 
optimal global planning strategy for maneuvering blocks to 
a target orbit is a straightforward Hohmann transfer (Miele 
et al., 2004).   
 
To fully address these challenges we chose a trajectory 
planning algorithm specifically designed to solve end-to-
end orbital docking problems involving both orbital 
maneuvering and proximity operations using realistic 
saturating thrusters (Henshaw, 2003).  Robust numerical 
methods and the use of Calculus of Variations allows the 
planner to develop a cost functional that penalizes fuel use, 
obstacle clearance distance, and arrival time while 
enforcing dynamic orbital constraints.  Six degree of 
freedom paths are found by deriving Euler-Lagrange 
equations corresponding to the cost functional, then 
solving the associated boundary value problem using 
collocation (implemented with the Levenberg-Marquardt 
algorithm) and continuation techniques, allowing for the 
optimization of arrival time and fuel use.  To avoid error 
effects, a feedback control algorithm was implemented 
(using Pontryagin’s minimum principle).  
 
The 6-DOF dynamic equations for the moving vehicle are: 

 
  
 
         (1) 
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where: 
p is vehicle position relative to the anchor/target1  
v is vehicle translational velocity relative to the target 
σ is a modified Rodrigues vector (a 3-element vector 
representing vehicle attitude without singularities) 
ω is the rotational rate vector in the body frame 
m is vehicle mass, 
H is the rotational inertial matrix, 
R(σ) is a rotation matrix that converts body to inertial 
coordinates, 
S the matrix representation of cross product ω×H  
Gσ(σ) is the dynamic equation for the Rodrigues vector 
u(t) is the force vector produced by saturating thrusters 
τ(t) is the limited torque vector.   

 
To generate the desired trajectory, a cost functional is 
minimized subject to the dynamic constraint, )(tz& :  

 
    (2) 
 

where: 
 f(z,ν,τ) represents vehicle dynamics from Eq. (1) 
Lcontrol[z,ν,τ] penalizes control effort—fuel use  
Lobstacle[z] penalizes obstacle clearance distance 
Ltime penalizes completion time 

 
Finally, the boundary conditions, specified by the 
Translator (see Figure 3), are defined by the initial state in 
each search node and the final waypoint computed from 
the initial state and choice of task to execute.  Although the 
translator need not specify time of arrival at the final state, 
motion of the target must be known as a function of arrival 
time which is reasonable given the target vehicle’s natural 
orbital motion.  The BW domain as defined for this work 
specifies trajectory planning problems with fixed arrival 
locations and either fixed or free arrival times, allowing a 
relatively simple form of the transversality boundary 
condition ( ) 0=⋅αL  to hold. 

4-block Assembly Results  
The 4-block linear assembly problem defined in Figure 2 
was cast in a circular equatorial orbit (target-orbit) 
with an orbital radius of 6767.06km (388.92km above the 
Earth).  All blocks/modules had edge length 0.2 km, and 
the faces were presumed tangent (no separation) when 
docked.2  Table 1 lists each block’s initial position pi(0) 
                                                 
1 The docking target block (or target orbit) may be in motion, but this 
motion must be modeled a priori—a reasonable assumption for insertion 
into a known orbit or docking to a controlled spacecraft. 
2 Each “block” has rather enormous dimensions for our example.  Such 
size and separation distance values were chosen to simultaneously 
illustrate the effects of obstacle avoidance and orbital dynamics on cost 
without modeling significantly more than four blocks.   

relative to anchor block-a and inertial orientation R(σ).  
Initial block relative velocities and angular 
velocities/accelerations were assumed zero since all blocks 
approximately occupy the same orbit.  
 

Table 1:  Initial block locations   
Block-i pi(0)   (km) R(σ)

block-a (0.0, 0.0, 0.0) (0.0, 0.0, 1.0)
block-b (1.0, 2.5, 1.0) (0.0, 0.0, 1.0)
block-c (2.0, 1.5, 0.0) (0.0, 0.0, 1.0)
block-d (3.0, 3.0, 1.5) (0.0, 0.0, 1.0)

 
 

Before examining the full 4-block planning process, we 
motivate the use of the full-state trajectory planner by 
examining a single action:  (dock block-d neg-y 
block-a pos-y) with only the block-d and 
block-a positions shown in Table 1—i.e., no other 
blocks acting as obstacles.   The optimal trajectory and cost 
were compared for the dock conducted in flat-space (no 
gravity) where a simpler path planner might suffice, with 
the same problem in the circular orbit specified above.   
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Figure 4:  Paths with gravity (black) versus flat-space 
(grey) models. 
 
A comparison of paths and force profiles for the two cases 
is shown in Figure 5.  Although the physical paths through 
space do not differ greatly, there is substantial difference in 
cost.  As shown in Figure 4, the force at any given time is 
nearly two orders of magnitude higher for the solution with 
gravity, however, this difference is mitigated to some 
extent by the reduced time to dock, thereby also lowering 
the time over which gravitational forces act on the block.  
Without gravity, the range of single docking operations for 
the four blocks with initial states given by Table 1 
exhibited minimal difference in assembly cost.  
Conversely, tasks executed with the gravitational model 
had cost that varied by up to 80% for different docking 
tasks. 
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Figure 5:  Comparative force plots for (dock d -y a -y) 
 
Next we ran the planner (search engine) with the blocks in 
their circular orbit.  A representation of the full search-
space is shown in Figure 5 along with the total cost for a 
number of complete paths through the search space.  This 
4-block example had branching factors 6, 4, and 2 at search 
levels 1, 2, and 3, respectively, representing the possible 
combinations of dock operations each unassembled block 
could achieve.  The optimal plan was computed to be:  1) 
(dock block-b neg-y block-a pos-y) (cost 
J=4.67E3), 2) (dock block-c neg-y block-b pos-
y) (J=5.91E3), then 3) (dock block-d neg-y block-
c pos-y) (J=2.29E4), with total assembly cost 

g=3.35E4.  Note that not all Level 2 or 3 nodes were 
actually expanded with the uniform cost engine; select cost 
data is provided to illustrate the search-space and facilitate 
assembly structure and cost comparison. 
 
For non-optimal assemblies, there was a significant range 
of individual docking task costs:  a minimum = 4.67E3  
(part of the optimal plan),   a maximum = 7.78E4, and an 
average = 2.25E4.   Further, the same final assembly 
structure does not ensure consistent cost (e.g., assembly c-
a-b-d in Figure 4).  As discussed in Section 3.2, the 
trajectory planner may return a different cost for the same 
final assembly based on obstacle avoidance requirements, 
illustrating the importance of task ordering choices for an 
optimal assembly. 
 
The layout of this 4-block problem was chosen to 
demonstrate the functionality of our system and to clearly 
illustrate the need for the integration of task and trajectory 
planning.  However, this integration comes at the cost of 
computational time; not uncommon to systems needing 
any degree of trajectory or even path planning fidelity 
(Pettersson and Doherty, 2004).  The worst runs need over 
an hour to compute, becoming cumbersome, or even 
prohibitive, as the number of assembly sequences scales 
with the number of blocks.  Even with this computational 
burden, there are ways to mitigate the necessity of running 
all assembly possibilities in the trajectory planner.  Making 
use of selective cost information, combining global and 
local assembly strategies, and incorporating pre-processing 
that uses system dynamics to deliver intelligent, best guess 
cost estimates are some of the ways the system can work in 
both offline and online capacities. 

Level 1 (complete):
1 = (dock b -x a +x)

2 = (dock c -x a +x)

3 = (dock d -x a +x)

4 = (dock b +x a -x)

5 = (dock c +x a -x)

6 = (dock d +x a -x)

OPTIMAL SOLUTION:
4 = (dock b +x a –x)

Level 2 (partial):
1-1 = (dock c +x a -x)
1-2 = (dock d +x a -x)
1-3 = (dock c -x b +x)
1-4 = (dock d -x b +x)

6-1 = (dock b -x a +x)
6-2 = (dock c -x a +x)
6-3 = (dock b +x d -x)
6-4 = (dock c +x d -x)

4-3 = (dock c +x b -x)

Level 3 (partial):
1-1a = (dock d -x b +x)
1-1b = (dock d +x c -x)

1-4a = (dock c +x a -x)
1-4b = (dock c -x d +x)

6-1a = (dock c -x b +x)
6-1b = (dock c +x d -x)

6-4a = (dock b -x a +x)
6-4b = (dock b +x c -x)

4-3b = (dock d +x c -x)

…
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Figure 5:  Four-block linear assembly search-space and assembly costs 



Conclusions and Future Work  
Intelligent in-space self-assembly requires careful 
integration of task-level and physics-based reasoning 
systems.  We have argued that assembly task planning 
necessarily requires the incorporation and knowledge of 
complex system dynamics in the overall task 
planning/sequencing strategy.  A framework for 
establishing a connection between an optimal control 
trajectory planner and task planner in this domain was 
established, from which we presented a simple assembly 
problem that clearly illustrated the need for a trajectory 
planner designed to work with continuous dynamical 
system models of in-space assembly problems as well as a 
task planner to propose action sequences that will 
successfully achieve assembly goals.   
 
This work began with planning algorithms and a PDDL 
model designed for a small set of blocks and sequential 
assembly choices due to the computationally-intensive 
planning processes involved.  Its primary contribution lies 
in the integration of optimal task and trajectory planners, 
specifically the knowledge representation and interface 
language that enable the task planner to manage complex 
trajectories while processing only a small set of symbolic 
features and a single measure of cost for each planning 
state.  A secondary contribution is the PDDL 3D BW 
domain definition (Figure 2).  Although a sophisticated 
trajectory planner is already in place, a more capable task 
planner will be required to increase search efficiency and 
enable parallel, multi-tasked activity schedules—an 
important capability when many “blocks” are assembled. 
 
Our aim for future work is to improve algorithmic 
efficiency by utilizing (admissible) heuristics to reduce 
search-space size while maintaining optimality and 
expanding the task planner to handle parallel assembly task 
execution.  The architecture and BW representation 
presented builds a foundation on which both AI and 
control systems researchers can build such extensions. 
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